游侠的博客 游侠的博客
首页
  • 论文笔记
  • 一些小知识点

    • pytorch、numpy、pandas函数简易解释
  • 《深度学习500问》
开发
技术
更多
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Ranger

一名在校研究生
首页
  • 论文笔记
  • 一些小知识点

    • pytorch、numpy、pandas函数简易解释
  • 《深度学习500问》
开发
技术
更多
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • 论文笔记

  • 一些小知识点

    • pytorch、numpy、pandas函数简易解释【持续更新ing】
    • BatchNorm和LayerNorm的区别
    • 监督学习步骤
    • 分类算法的评价指标
    • 生成模型判别模型区别
    • 常见损失函数及说明
    • LDA与PCA降维方法
      • 线性判别分析
        • 图解LDA核心思想
        • LDA优缺点
      • 主成分分析PCA
        • 图解PCA核心思想
        • PCA算法主要优缺点
      • LDA和PCA区别
      • 降维的必要性及目的
    • nn.Sequential作用
    • one-hot编码
    • python中的zip函数
    • 关于nn.CrossEntropyLoss的一些小说明
    • 关于使用全局平均池化需要注意的地方
    • L2正则化、归一化、范数
  • 《深度学习500问》

  • pytorch知识点

  • 人工智能
  • 一些小知识点
yangzhixuan
2023-02-19
目录

LDA与PCA降维方法

# 线性判别分析

线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的降维方法。和主成分分析PCA不考虑样本类别输出的无监督降维技术不同,LDA是一种监督学习的降维技术,数据集的每个样本有类别输出。

LDA分类思想简单总结如下:

  1. 多维空间中,数据处理分类问题较为复杂,LDA算法将多维空间中的数据投影到一条直线上,将d维数据转化成1维数据进行处理。
  2. 对于训练数据,设法将多维数据投影到一条直线上,同类数据的投影点尽可能接近,异类数据点尽可能远离。
  3. 对数据进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定样本的类别。
  4. 如果用一句话概括LDA思想,即“投影后类内方差最小,类间方差最大”。

# 图解LDA核心思想

假设有红、蓝两类数据,这些数据特征均为二维,如下图所示。我们的目标是将这些数据投影到一维,让每一类相近的数据的投影点尽可能接近,不同类别数据尽可能远,即图中红色和蓝色数据中心之间的距离尽可能大。

image

左图和右图是两种不同的投影方式。

左图思路:让不同类别的平均点距离最远的投影方式。

右图思路:让同类别的数据挨得最近的投影方式。

从上图直观看出,右图红色数据和蓝色数据在各自的区域来说相对集中,根据数据分布直方图也可看出,所以右图的投影效果好于左图,左图中间直方图部分有明显交集。

以上例子是基于数据是二维的,分类后的投影是一条直线。如果原始数据是多维的,则投影后的分类面是一低维的超平面。

# LDA优缺点

优缺点 简要说明
优点 1. 可以使用类别的先验知识;
2. 以标签、类别衡量差异性的有监督降维方式,相对于PCA的模糊性,其目的更明确,更能反映样本间的差异;
缺点 1. LDA不适合对非高斯分布样本进行降维;
2. LDA降维最多降到分类数k-1维;
3. LDA在样本分类信息依赖方差而不是均值时,降维效果不好;
4. LDA可能过度拟合数据。

# 主成分分析PCA

  1. PCA就是将高维的数据通过线性变换投影到低维空间上去。
  2. 投影思想:找出最能够代表原始数据的投影方法。被PCA降掉的那些维度只能是那些噪声或是冗余的数据。
  3. 去冗余:去除可以被其他向量代表的线性相关向量,这部分信息量是多余的。
  4. 去噪声,去除较小特征值对应的特征向量,特征值的大小反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大,要保留。
  5. 对角化矩阵,寻找极大线性无关组,保留较大的特征值,去除较小特征值,组成一个投影矩阵,对原始样本矩阵进行投影,得到降维后的新样本矩阵。
  6. 完成PCA的关键是——协方差矩阵。协方差矩阵,能同时表现不同维度间的相关性以及各个维度上的方差。协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间。
  7. 之所以对角化,因为对角化之后非对角上的元素都是0,达到去噪声的目的。对角化后的协方差矩阵,对角线上较小的新方差对应的就是那些该去掉的维度。所以我们只取那些含有较大能量(特征值)的维度,其余的就舍掉,即去冗余。

# 图解PCA核心思想

PCA可解决训练数据中存在数据特征过多或特征累赘的问题。核心思想是将m维特征映射到n维(n < m),这n维形成主元,是重构出来最能代表原始数据的正交特征。

假设数据集是m个n维,。如果,需要降维到,现在想找到某一维度方向代表这两个维度的数据。下图有两个向量方向,但是哪个向量才是我们所想要的,可以更好代表原始数据集的呢?

image

从图可看出,比好,为什么呢?有以下两个主要评价指标:

  1. 样本点到这个直线的距离足够近。
  2. 样本点在这个直线上的投影能尽可能的分开。

如果我们需要降维的目标维数是其他任意维,则:

  1. 样本点到这个超平面的距离足够近。
  2. 样本点在这个超平面上的投影能尽可能的分开。

# PCA算法主要优缺点

优缺点 简要说明
优点 1. 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。 2.各主成分之间正交,可消除原始数据成分间的相互影响的因素。3. 计算方法简单,主要运算是特征值分解,易于实现。
缺点 1.主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。2. 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。

# LDA和PCA区别

异同点 LDA PCA
相同点 1. 两者均可以对数据进行降维;
2. 两者在降维时均使用了矩阵特征分解的思想;
3. 两者都假设数据符合高斯分布;
不同点 有监督的降维方法; 无监督的降维方法;
降维最多降到k-1维; 降维多少没有限制;
可以用于降维,还可以用于分类; 只用于降维;
选择分类性能最好的投影方向; 选择样本点投影具有最大方差的方向;
更明确,更能反映样本间差异; 目的较为模糊;

# 降维的必要性及目的

降维的必要性:

  1. 多重共线性和预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。
  2. 高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有2%。
  3. 过多的变量,对查找规律造成冗余麻烦。
  4. 仅在变量层面上分析可能会忽略变量之间的潜在联系。例如几个预测变量可能落入仅反映数据某一方面特征的一个组内。

降维的目的:

  1. 减少预测变量的个数。
  2. 确保这些变量是相互独立的。
  3. 提供一个框架来解释结果。相关特征,特别是重要特征更能在数据中明确的显示出来;如果只有两维或者三维的话,更便于可视化展示。
  4. 数据在低维下更容易处理、更容易使用。
  5. 去除数据噪声。
  6. 降低算法运算开销。
编辑 (opens new window)
上次更新: 2024/05/30, 07:49:34
常见损失函数及说明
nn.Sequential作用

← 常见损失函数及说明 nn.Sequential作用→

最近更新
01
tensor比较大小函数
05-30
02
Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection
05-27
03
半监督学习经典方法 Π-model、Mean Teacher
04-10
更多文章>
Theme by Vdoing | Copyright © 2023-2024 Ranger | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式